Lecture 10 2021/2022

Microwave Devices and Circuits for Radiocommunications

Week 14, Monday 11-13, P2? P6?

2021/2022

- 2C/1L, MDCR
- <u>Attendance at minimum 7 sessions (course +</u> <u>laboratory)</u>
- Lectures- associate professor Radu Damian
 - Monday 11-13, P8, Microsoft Teams
 - E 50% final grade, room?
 - problems + (2p atten. lect.) + (3 tests) + (bonus activity)
 - first test L2: 28.02.2022 (t2 and t3 not announced)
 - 3p=+0.5p
 - all materials/equipments authorized

2021/2022

- Laboratory associate professor Radu Damian
 - Thursday 16-18, II.13
 - Friday 8-12, II.13, odd week
 - L 25% final grade
 - ADS, 4 sessions
 - Attendance + personal results
 - P 25% final grade
 - ADS, 3 sessions (-1? 25.02.2022)
 - personal homework

Materials

RF-OPTO

- http://rf-opto.etti.tuiasi.ro
- David Pozar, "Microwave Engineering", Wiley; 4th edition, 2011

Photos

- sent by email/online exam
- used at lectures/laboratory

Profile photo

Profile photo – online "exam"

Examene online: 2020/2021

Disciplina: MDC (Microwave Devices and Circuits (Engleza))

Pas 3

Nr.	Titlu	Start	Stop	Text
1	Profile photos	03/03/2021; 10:00	08/04/2021; 08:00	Online "exam" created f .
2	Mini Test 1 (lecture 2)	03/03/2021; 15:35	03/03/2021; 15:50	The current test consis

Online

access to online exams requires the password received by email

Online results submission

many numerical values

Online results submission

Grade = Quality of the work + + Quality of the submission

Important

The lossless line

 input impedance of a length *l* of transmission line with characteristic impedance *Z_o*, loaded with an arbitrary impedance *Z_L*

The lossless line

$$V(z) = V_0^+ e^{-j \cdot \beta \cdot z} + V_0^- e^{j \cdot \beta \cdot z}$$
$$I(z) = \frac{V_0^+}{Z_0} e^{-j \cdot \beta \cdot z} - \frac{V_0^-}{Z_0} e^{j \cdot \beta \cdot z}$$
$$Z_L = \frac{V(0)}{I(0)} \qquad Z_L = \frac{V_0^+ + V_0^-}{V_0^+ - V_0^-} \cdot Z_0$$

 voltage reflection coefficient

$$\Gamma = \frac{V_0^-}{V_0^+} = \frac{Z_L - Z_0}{Z_L + Z_0}$$

Z_o real

The lossless line

$$V(z) = V_0^+ \cdot \left(e^{-j \cdot \beta \cdot z} + \Gamma \cdot e^{j \cdot \beta \cdot z} \right) \qquad \qquad I(z) = \frac{V_0^+}{Z_0} \cdot \left(e^{-j \cdot \beta \cdot z} - \Gamma \cdot e^{j \cdot \beta \cdot z} \right)$$

time-average Power flow along the line

$$P_{avg} = \frac{1}{2} \cdot \operatorname{Re}\left\{V(z) \cdot I(z)^{*}\right\} = \frac{1}{2} \cdot \frac{\left|V_{0}^{+}\right|^{2}}{Z_{0}} \cdot \operatorname{Re}\left\{1 - \Gamma^{*} \cdot e^{-2j \cdot \beta \cdot z} + \Gamma \cdot e^{2j \cdot \beta \cdot z} - \left|\Gamma\right|^{2}\right\}$$

$$P_{avg} = \frac{1}{2} \cdot \frac{\left|V_{0}^{+}\right|^{2}}{Z_{0}} \cdot \left(1 - \left|\Gamma\right|^{2}\right)$$

- Total power delivered to the load = Incident power – "Reflected" power
 Return "Loss" [dB]
- Return "Loss" [dB] $RL = -20 \cdot \log |\Gamma|$ [dB]

Reflection and power / Model

- The source has the ability to sent to the load a certain maximum power (available power) P_a
- For a particular load the power sent to the load is less than the maximum (mismatch) P_L < P_a
- The phenomenon is "as if" (model) some of the power is reflected P_r = P_a P_L
- The power is a scalar !

Matching , from the point of view of power transmission

Scattering matrix – S

- a,b
 - information about signal power AND signal phase
- S_{ii}
 - network effect (gain) over signal power including phase information

Impedance matching

The Smith Chart

The Smith Chart

Impedance Matching Impedance Matching with Stubs

Smith chart, r=1 and g=1

Impedance Matching with Stubs

Analytical solutions

Exam / Project

Case 1, Shunt Stub

Shunt Stub

Analytical solution, usage

$$\cos(\varphi + 2\theta) = -|\Gamma_{S}|$$

$$\theta_{sp} = \beta \cdot l = \tan^{-1} \frac{\mp 2 \cdot |\Gamma_{S}|}{\sqrt{1 - |\Gamma_{S}|^{2}}}$$

 $|\Gamma_s| = 0.593; \quad \varphi = 46.85^\circ \quad \cos(\varphi + 2\theta) = -0.593 \implies (\varphi + 2\theta) = \pm 126.35^\circ$

- The sign (+/-) chosen for the series line equation imposes the sign used for the shunt stub equation
 - "+" solution $(46.85^{\circ} + 2\theta) = +126.35^{\circ}$ $\theta = +39.7^{\circ}$ Im $y_s = \frac{-2 \cdot |\Gamma_s|}{\sqrt{1 - |\Gamma_s|^2}} = -1.472$ $\theta_{sp} = \tan^{-1}(\operatorname{Im} y_s) = -55.8^{\circ}(+180^{\circ}) \rightarrow \theta_{sp} = 124.2^{\circ}$

• "-" solution

$$(46.85^{\circ} + 2\theta) = -126.35^{\circ} \qquad \theta = -86.6^{\circ}(+180^{\circ}) \rightarrow \theta = 93.4^{\circ}$$

$$\operatorname{Im} y_{s} = \frac{+2 \cdot |\Gamma_{s}|}{\sqrt{1 - |\Gamma_{s}|^{2}}} = +1.472 \qquad \theta_{sp} = \tan^{-1}(\operatorname{Im} y_{s}) = 55.8^{\circ}$$

Case 2, Series Stub

- Series Stub
- difficult to realize in single conductor line technologies (microstrip)

Analytical solution, usage

$$\cos(\varphi + 2\theta) = |\Gamma_s|$$

$$\theta_{ss} = \beta \cdot l = \cot^{-1} \frac{\mp 2 \cdot |\Gamma_s|}{\sqrt{1 - |\Gamma_s|^2}}$$

 $\Gamma_{\rm s} = 0.555 \angle -29.92^{\circ}$ $|\Gamma_s| = 0.555; \quad \varphi = -29.92^\circ \quad \cos(\varphi + 2\theta) = 0.555 \Rightarrow (\varphi + 2\theta) = \pm 56.28^\circ$

- The sign (+/-) chosen for the series line equation imposes the sign used for the series stub equation
 - "+" solution $\begin{array}{l} \textbf{``+`' Solution} \\ (-29.92^{\circ} + 2\theta) = +56.28^{\circ} \\ \theta = 43.1^{\circ} \\ \textbf{Im} z_{s} = \frac{+2 \cdot |\Gamma_{s}|}{\sqrt{1 - |\Gamma_{s}|^{2}}} = +1.335 \\ \theta_{ss} = -\cot^{-1}(\text{Im} z_{s}) = -36.8^{\circ}(+180^{\circ}) \rightarrow \theta_{ss} = 143.2^{\circ} \end{array}$

 - "-" solution $(-29.92^\circ + 2\theta) = -56.28^\circ$ $\theta = -13.2^\circ(+180^\circ) \rightarrow \theta = 166.8^\circ$ $\operatorname{Im} z_{s} = \frac{-2 \cdot |\Gamma_{s}|}{\sqrt{1 - |\Gamma_{s}|^{2}}} = -1.335 \qquad \theta_{ss} = -\operatorname{cot}^{-1}(\operatorname{Im} z_{s}) = 36.8^{\circ}$

Microwave Amplifiers

Amplifier Power / Matching

 Two ports in which matching influences the power transfer

Amplifier as two-port

Input matching circuit

If we can afford a 1.2dB decrease of the input gain for better NF, Q (Gs = 1 dB), position m1 above is better
 We obtain better (smaller) NF

Output matching circuit

output constant gain circles CCCOUT: -0.4dB, -0.2dB, odB, +0.2dB
 the lack of noise restrictions allows optimization for better gain (close to maximum – position m4)

The Smith Chart

The Smith Chart

Microwave Amplifiers

Broadband amplifiers

Broadband/Wideband amplifiers

- Achieved by some design techniques (only at the expense of gain, complexity)
 - 1. Compensated matching networks
 - 2. Resistive matching networks
 - 3. Negative feedback
 - 4. Balanced amplifiers
 - 5. Distributed amplifiers
 - 6. Differential amplifiers
Balanced amplifiers

two identical amplifiers with two hybrid couplers
 3 dB / 90° to cancel input and output reflections

$$S_{21} = \frac{-j}{2} \cdot (G_A + G_B) \qquad S_{21}|_{A=B} = -j \cdot G$$

$$S_{11} = \frac{1}{2} \cdot (\Gamma_A - \Gamma_B) \qquad F = \frac{1}{2} \cdot (F_A + F_B) \qquad S_{11}|_{A=B} = 0$$

Balanced amplifiers

Distributed amplifiers

Distributed amplifiers

 the phase delays on the gate (input) and drain (output) lines are synchronized

$$\gamma_g = \alpha_g + j \cdot \beta_g \qquad \gamma_d = \alpha_d + j \cdot \beta_d \qquad \beta_g \cdot l_g = \beta_d \cdot l_d$$

Power gain

$$G = \frac{g_m^2 \cdot Z_d \cdot Z_g}{4} \cdot \frac{\left(e^{-N \cdot \alpha_g \cdot l_g} - e^{-N \cdot \alpha_d \cdot l_d}\right)^2}{\left(e^{-\alpha_g \cdot l_g} - e^{-\alpha_d \cdot l_d}\right)^2}$$

Lossless power gain

$$G = \frac{g_m^2 \cdot Z_d \cdot Z_g \cdot N^2}{4}$$

Distributed amplifiers

$$N_{opt} = \frac{\ln(\alpha_g \cdot l_g) - \ln(\alpha_d \cdot l_d)}{\alpha_g \cdot l_g - \alpha_d \cdot l_d}$$

Differential amplifiers

 In differential mode the input capacitances of the two transistors are connected in series
 Unity gain frequency is doubled

Differential amplifiers

We use circuits to transition from an unbalanced signal to a balanced signal (or vice versa)

- hybrid couplers 3dB / 180°
- "balun" (balanced unbalanced)

Compensated matching networks

 Control the design of the matching networks at more (at least 2) frequencies and impose the same gain

Microwave Amplifiers

Multistage Amplifier Design

Multistage amplifiers

- Interstage matching can be designed in two modes:
 - Each stage is matched to a virtual Γ = o

Multistage amplifiers

- Interstage matching can be designed in two modes:
 - One stage is matched to offer necessary Γ for the second stage

Example multistage LNA

- Similar to the project assignment
- LNA using ATF-34143 providing:
 - G = 20dB
 - F = 1dB
 - @f = 5GHz

Example

- ATF-34143 at Vds=3V Id=20mA.
- @5GHz
 - S11 = 0.64∠139°
 - S12 = 0.119∠-21°
 - S21 = 3.165 ∠16°
 - S22 = 0.22 ∠146°
 - Fmin = 0.54 (typically[dB] !)
 - Γ_{opt} = 0.45 ∠174°

• r_n = 0.03

Example, LNA @ 5 GHz

- ATF-34143 at Vds=3V Id=20mA.
- @5GHz
 S11 = 0.64∠139°
 S12 = 0.119∠-21°
 - S21 = 3.165 ∠16°
 - S22 = 0.22 ∠146°
 - Fmin = 0.54 (tipic [dB]
 - Γ_{opt} = 0.45 ∠174°
 - r_n = 0.03

-	
	!ATF-34143 !S-PARAMETERS at Vds=3V Id=20mA. LAST UPDATED 01-29-99
	# ghz s ma r 50
	2.0 0.75 -126 6.306 90 0.088 23 0.26 -120
	2.5 0.72 -145 5.438 75 0.095 15 0.25 -140
	3.0 0.69 -162 4.762 62 0.102 7 0.23 -156
	4.0 0.65 166 3.806 38 0.111 -8 0.22 174
	5.0 0.64 139 3.165 16 0.119 -21 0.22 146
	6.0 0.65 114 2.706 -5 0.125 -35 0.23 118
	7.0 0.66 89 2.326 -27 0.129 -49 0.25 91
	8.0 0.69 67 2.017 -47 0.133 -62 0.29 67
	9.0 0.72 48 1.758 -66 0.135 -75 0.34 46
B]	!FREQ Fopt GAMMA OPT RN/Zo !GHZ dB MAG ANG -
	2.0 0.19 0.71 66 0.09
	2.5 0.23 0.65 83 0.07
	3.0 0.29 0.59 102 0.06
	4.0 0.42 0.51 138 0.03
	5.0 0.54 0.45 174 0.03
	6.0 0.67 0.42 -151 0.05
	7.0 0.79 0.42 -118 0.10
	8.0 0.92 0.45 -88 0.18
	90 1 04 0 51 -63 0 30

Multistage amplifiers

- If we need more power gain than only one transistor can supply
 - design target 20dB
 - MAG @5GHz = 14.248 dB < 20dB</p>
- We use Friis formula to separate the target:
 - Power gain
 - Noise
- on two amplifier stages

$$F_{cas} = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 \cdot G_2} + \frac{F_4 - 1}{G_1 \cdot G_2 \cdot G_3} + \cdots$$

Effects of Friis Formula:

- it's essential that the first stage is as noiseless as possible even if that means sacrificing power
- the second stage can be optimized for power gain
- Friis Formula <u>must</u> be used in linear scale!
- Avago/Broadcom AppCAD
 - AppCAD Free Design Assistant Tool for Microsoft Windows → Google

$$G_{cas} = G_1 \cdot G_2$$
 $F_{cas} = F_1 + \frac{1}{G_1} (F_2 - 1)$

Friis formula

- first stage: low noise factor, probably resulting in a smaller gain
- second stage: high gain, probably resulting in higher noise factor
- It's essential to introduce a design margin (reserve: ΔF , ΔG)
 - $G = G_{design} + \Delta G$
 - $F = F_{design} \Delta F$
- Interpretation of the design target
 - G > G_{design}, better, but it's not required to sacrifice other parameters to maximize the gain
 - F < F_{design}, better, the smaller the better, we must target the smallest possible noise factor as long as the other design parameters are met

Friis formula

- first stage: low noise factor, probably resulting in a smaller gain
- second stage: high gain, probably resulting in higher noise factor

 $=10^{0.9} = 7.943$

 $=10^{1.3} = 19.953$

=158.49

- Separation of the design parameters on the 2 amplification stages (Estimated!)
 - input stage: $F_1 = 0.7 dB$, $G_1 = 9 dB$
 - output stage: F2 = 1.2 dB, G2 = 13 dB
- To verify the result apply Friis formula
- First transform to linear scale ! г. т

$$F_{1} = 10 \frac{F_{1}[dB]}{10} = 10^{0.07} = 1.175$$

$$F_{2} = 10 \frac{F_{2}[dB]}{10} = 10^{0.12} = 1.318$$

$$F_{2} = 10 \frac{F_{1}[dB]}{10} = 10^{1.3} = 19.953$$

Avago/Broadcom AppCAD

		- F	-1-		/340-1121-112					
NoiseCalc	Set	Number of Stag	ges	= 2	Ualcul	ate [F4]				
			-		Stage 1	Stage	e 2	1		
		Stage Da	ita	Units		A36	>-			
		Stage Name:			Avago Duplemer	Ava ATE-3	go 0XXX			
		Noise Figure		dB	0.	7	1.2			
		Gain		dB		9	13			
		Output IP3 dNF/dTemp dG/dTemp Stage Analysis: NF (Temp corr) Gain (Temp corr)		dBm	10	0	14.5			
				dB/°C	0 0					
				dB/°C		0	0			
]		
				dB	0.7	0	1.20			
				dB	9.0	0 13.00				
		Input Power		dBm	-50.0	0 -	41.00			
		Output Power		dBm	-41.0	0 -	28.00			
		d NF/d NF		dB/dB	0.9	17	0.15			
		d NF/d Gain		dB/dB	-0.0	3	0.00			
		d IP3/d IP3		dBm/dBm	0.0	0	1.00			
Enter System Paramete	ers:		Sys	tem Analysia.						
Input Power	-50	dBm		Gain =	22.00	dB		Input IP3 =	-7.50	dBm
Analysis Temperature	e 25	°C	N	oise Figure =	0.85	dB		Output IP3 =	14.50	dBm
Noise BW	1	MHz	N	oise Temp -	02.04	°К		Input IM level =	-135.00	dBm
Ref Temperature	25	°C		SNR =	63.13	dB		Input IM level =	-85.00	dBC
S/N (for sensitivity)	10	dB		MDS =	-113.13	dBm	0	utput IM level =	-113.00	dBm
Noise Source (Ref)	290	۴K		Sensitivity =	-103.13	dBm	0	utput IM level =	-85.00	dBC
10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	146	10	N	Noise Floor =	-173.13	dBm/Hz		SFDB =	70.42	dB

Multistage amplifier design

- Separation of the design parameters on the 2 amplification stages (Estimated!)
 - input stage: F1 = 0.7 dB, G1 = 9 dB
 - output stage: F2 = 1.2 dB, G2 = 13 dB
 - total: F = 0.85 dB, G = 22 dB
- Meets design specifications (with design margin)
- We can reuse some of the results in the single stage LNA design (Lecture 8)
 - input matching can be used for the input of the first stage very low noise, good enough power gain
 - output matching was designed for maximum gain, can be used for the output of the second stage
 - input and output matching were designed for 50Ω source and load, similar to current conditions

Multistage amplifier design

- Gain computation
 - Interstage matching can supplement the gain for both amplifier stages
 - The design for input and output matching must be achieved on a single transistor schematic (recommended: easier)

- We favor optimization for noise (low/minimum)
- Also considered
 - Power gain (can be lower, but not too much)
 - Bandwidth (through Q, quality factor)
 - Stability

- For the input matching circuit
 - noise circle CZ: 0.75dB
 - input constant gain circles CCCIN: 1dB, 1.5dB, 2 dB
- We choose (small $Q \rightarrow$ wide bandwidth) position m1

If we can afford a 1.2dB decrease of the input gain for better NF,Q (Gs = 1 dB), position m1 above is better
 We favor better (smaller) NF

G₅₁: Position m1 in complex plane, 1dB $\Gamma_{\rm S} = 0.412 \angle -178^{\circ}$ $|\Gamma_{S}| = 0.412; \quad \varphi = -178^{\circ}$ $\operatorname{Im}[y_{S}(\theta)] = \frac{\mp 2 \cdot |\Gamma_{S}|}{\sqrt{1 - |\Gamma_{S}|^{2}}}$ $\cos(\varphi + 2\theta) = -|\Gamma_{\rm s}|$ $\cos(\varphi + 2\theta) = -0.412 \implies (\varphi + 2\theta) = \pm 114.33^{\circ}$ $\theta_{sp} = \tan^{-1} \left(\operatorname{Im}[y_{s}(\theta)] \right) = \tan^{-1} \left(\frac{\mp 2 \cdot |\Gamma_{s}|}{\sqrt{1 - |\Gamma|^{2}}} \right)$ $(\varphi + 2\theta) = \begin{cases} +114.33^{\circ} \\ -114.33^{\circ} \end{cases} \theta = \begin{cases} 146.2^{\circ} \\ 31.8^{\circ} \end{cases} \operatorname{Im}[y_{S}(\theta)] = \begin{cases} -0.904 \\ +0.904 \end{cases} \theta_{sp} = \begin{cases} 137.9^{\circ} \\ 42.1^{\circ} \end{cases}$

Output matching stage 2 (L2)

F1 = 0.7 dB, G1 = 9 dB

F2 = 1.2 dB, G2 = 13 dB

- We favor optimization for gain (high/maximum)
- Also considered
 - Bandwidth (through Q, quality factor)
 - Stability
- noise is not an issue, output matching doesn't influence noise factor

Output matching stage 2 (L2)

output constant gain circles CCCOUT: -0.4dB, -0.2dB, odB, +0.2dB
 The lack of noise restrictions allows optimization for better gain (close to maximum – position m4)

Output matching stage 2 (L2)

G₁₃: Position m4 in complex plane, o.2dB $\Gamma_{I} = 0.186 \angle -132.9^{\circ}$ $|\Gamma_L| = 0.186; \quad \varphi = -132.9^{\circ}$ $\mathrm{Im}[y_{L}(\theta)] = \frac{-2 \cdot |\Gamma_{L}|}{\sqrt{1 - |\Gamma|^{2}}} = -0.379$ $\cos(\varphi + 2\theta) = -|\Gamma_L|$ $\cos(\varphi + 2\theta) = -0.186 \implies (\varphi + 2\theta) = \pm 100.72^{\circ}$ $\theta_{sp} = \tan^{-1} \left(\operatorname{Im}[y_L(\theta)] \right) = \tan^{-1} \left(\frac{\mp 2 \cdot |\Gamma_L|}{\sqrt{1 - |\Gamma_L|^2}} \right)$

 $(\varphi + 2\theta) = \begin{cases} +100.72^{\circ} \\ -100.72^{\circ} \end{cases} \theta = \begin{cases} 116.8^{\circ} \\ 16.1^{\circ} \end{cases} \operatorname{Im}[y_{L}(\theta)] = \begin{cases} -0.379 \\ +0.379 \end{cases} \theta_{sp} = \begin{cases} 159.3^{\circ} \\ 20.7^{\circ} \end{cases}$

- Also considered
 - Bandwidth (through Q, quality factor)
 - Stability

 We influence the noise factor of the second stage, the noise must be considered but with less restrictive conditions (Friis shows that higher noise is acceptable).

Multistage amplifier

Power gain

$$G_{T}[dB] = G_{S1}[dB] + G_{0}[dB] + G_{I}[dB] + G_{0}[dB] + G_{L2}[dB]$$

$$G_{0} = |S_{21}|^{2} = 10.017 = 10.007 \ dB$$

$$G_{T}[dB] = 1 \ dB + 10 \ dB + G_{I}[dB] + 10 \ dB + 0.2 \ dB$$

$$G_{T}[dB] = 21.2 \ dB + G_{I}[dB]$$

 Interstage match design must provide at least o.8dB gain to meet specifications, by better match for the output of the first transistor and for the input of the second transistor

 A single transmission line keeps constant the magnitude of the reflection coefficient

- Can be designed in two ways:
 - starting from the output of the first stage (reflection coefficient S22^{*}) towards the circles (drawn for the second stage):
 - stability
 - gain
 - noise
 - starting from the input of the second stage (reflection coefficient S11^{*}) towards the circles (drawn for the first stage):
 - stability
 - gain

 First design direction has the advantage to offer control over the noise introduced by the second stage

Starting point – complex conjugate

A single

transmission line allows reaching a point that cannot be optimized

- G_{L1} = 0.2dB
- G_{S2} = 1 dB
- $F_2 = 0.7 \, dB$
- Only one parameter is available for wide band performance tuning

ADS

freq, GHz
ADS

freq, GHz

 Using multiple transmission lines for matching each stage to a intermediate Γ=o (virtual) allows detailed control over final reflection coefficient (and thus gain/noise)

- Instead of a single match design we have to design two matching networks
- However both matching networks are anchored to a fixed point (50Ω, Γ=0) so we can use design formulas (Impedance Matching with Stubs)
- Also, due to the presence of multiple networks, we can target precise positions (reflection coefficients) on both stages

Multistage amplifier

Power gain

- $G_{T}[dB] = G_{S1}[dB] + G_{0}[dB] + G_{L1}[dB] + G_{S2}[dB] + G_{0}[dB] + G_{L2}[dB]$
- $G_T[dB] = 1 dB + 10 dB + G_{L1}[dB] + G_{S2}[dB] + 10 dB + 0.2 dB$

 $G_T[dB] = 21.2 dB + G_{L1}[dB] + G_{S2}[dB]$

 Interstage match design must provide at least o.8dB in total gain to meet specifications, by separately better matching the output of the first transistor and for the input of the second transistor

 Using multiple transmission lines for matching each stage to a intermediate Γ=o (virtual) allows detailed control over reflection coefficient on both stages

 One of the stages creates through its matching network a reflection coefficient Γ=o towards which the other stage is matched

The two shunt stubs combine into a single one

- series line → moves around the center of the SC
 shunt stub → on
 - the circle g=1

- For every stage we use a series line and a shunt stub
 - the series line moves the reflection coefficient from the desired starting point on the unity conductance circle g=1
 - the shunt stub moves the point to the center of the Smith Chart (Zo match)
- The two shunt stubs will then combine into one

Output matching stage 1 (L1)

- **G**_{L1} (we use the same point <- output L2), **o.2dB** $\Gamma_L = 0.186 \angle -132.9^\circ$ $|\Gamma_L| = 0.186; \quad \varphi = -132.9^\circ$ $\cos(\varphi + 2\theta) = -|\Gamma_L|$ $\operatorname{Im}[y_L(\theta)] = \frac{-2 \cdot |\Gamma_L|}{\sqrt{1 - |\Gamma_L|^2}} = -0.379$ $\cos(\varphi + 2\theta) = -0.186 \Rightarrow (\varphi + 2\theta) = \pm 100.72^\circ$
- the length of the shunt stub θ_{sp} is not calculated because it is not needed

$$(\varphi + 2\theta) = \begin{cases} +100.72^{\circ} \\ -100.72^{\circ} \end{cases} \theta = \begin{cases} 116.8^{\circ} \\ 16.1^{\circ} \end{cases} \operatorname{Im}[y_{L}(\theta)] = \begin{cases} -0.379 \\ +0.379 \end{cases}$$

Output matching stage 1 (L1)

Equation	Solution L1A	Solution L1B
Φ+2θ	+100.72°	-100.72°
θ	116.8°	16.1°
$Im[y(\theta)]$	-0.379	+0.379

Verify stage 1

Input matching stage 2 (S2)

G_{S2} (moving from Γ_{S2} we choose towards complex plane origin – m3 – gain 2dB)

Input matching stage 2 (S2)

- **G**_{S2} (going from m3 towards origin), 2dB $\Gamma_{S2} = 0.461 \angle -142.66^{\circ}$ $|\Gamma_{S2}| = 0.461; \quad \varphi = -142.66^{\circ}$ $\cos(\varphi + 2\theta) = -|\Gamma_{S2}|$ $\operatorname{Im}[y_{S2}(\theta)] = \frac{\mp 2 \cdot |\Gamma_{S2}|}{\sqrt{1 - |\Gamma_{S2}|^2}}$ $\cos(\varphi + 2\theta) = -0.461 \Rightarrow (\varphi + 2\theta) = \pm 117.45^{\circ}$
- the length of the shunt stub θ_{sp} is not calculated because it is not needed

$$(\varphi + 2\theta) = \begin{cases} +117.45^{\circ} \\ -117.45^{\circ} \end{cases} \theta = \begin{cases} 130.1^{\circ} \\ 12.6^{\circ} \end{cases} \operatorname{Im}[y_{s_2}(\theta)] = \begin{cases} -1.039 \\ +1.039 \end{cases}$$

Input matching stage 2 (S2)

Equation	Solution S2A	Solution S2B
Φ +2 θ	+117.45°	-117.45°
θ	130.1°	12.6°
$Im[y(\theta)]$	-1.039	+1.039

Verify stage 2

 According to the conclusions of the Friis formula, the second stage obtains a higher gain because a higher noise is acceptable.

Merging the two shunt stubs

- The two shunt stubs merge into a single one
 There are 4 possible combinations depending on how we chose the electrical length for the two series lines
 - for each chosen electric length (θ) the corresponding Im[y(θ)] must be used
- Ex:

$$\theta_{L1} = 116.8^{\circ} \quad \theta_{S2} = 130.1^{\circ} \qquad \text{Im}[y_{sp}] = \text{Im}[y_{L1}(\theta)] + \text{Im}[y_{S2}(\theta)] = -1.418$$
$$\theta_{sp} = \tan^{-1}(\text{Im}[y_{sp}]) \qquad \theta_{sp} = 125.2^{\circ}$$

Merging the two shunt stubs

- 4 possible combinations
 - the admittances are in parallel and add up, not the electrical lengths

Merging the two shunt stubs

Smith Chart

- series line → moves around the center of the SC
 shunt stub → on
 - the circle g=1

Merge 1, Smith Chart

Merge 1, ADS

Merge 2, Smith Chart

Merge 2, ADS

- -

Merge 3, Smith Chart

Merge 3, ADS

Merge 4, Smith Chart

Merge 4, ADS

- All the combinations obtained meet the target conditions for gain and noise
- Choose a convenient one depending on:
 - the physical dimensions of the lines l =

$$=\frac{\theta}{360^{\circ}}\cdot\lambda$$

- frequency bandwidth/flatness
- stability
- performance (noise/gain)
- input and output reflection
- etc.

Supplement Mini Project

- microstrip lines
 - dielectric layer
 - plane metallization (ground plane)
 - traces which will control:
 - characteristic impedance
 - physical/electrical length

Figure 3.25a © John Wiley & Sons, Inc. All rights reserved

quasi TEM line

quasi TEM line, EmPro

		Total H	:(dB) R	efere	nce va	lue: 1	15.138	35 A/n	n				_							27
1	-3	0.161	-23	5.852		3	21.544	4		-17.2	35		-12.9	26		-8.61	74		-4.3087	0
	•	۲		*		*							•	•	•	*		*	*	•
	•	,		1	*	1	^	-	-	-1	-		-			×			*	۵
4	*		•	1	1	*				-				. *				- k		
•	*			1	1			-	-	-	-	- 7				•	•			
- 19 4 (1997)	*			1	1	1	*	-	-	4	-	-			. *	•				
	¥					1	*	-	-	4	-	-								
						1	1	-	4	-4	-	-	-	*			•			
•	•					>	-	-	-	4	-	-	-	- >	>		•			4
•					1	>	1	-	-	4	-	-	-	>	>					
						>	-	-	-	4	-	-	-	>						4
						>	-	-	-	\blacksquare	-	-	-	>						
	•		- 🙀			5	-	-	4	4	-	-								4
	4		-	4	4	5	-		-	4	-	-	-		b	-	4	4	4	
				4	4	6	1	4	-	-	-	-	-		1		4	4		
		1 A A		4	4	4	4.	4	-	-	-	-	4	4	1	4,	4	1	-	1
						X									-		-	-	-	
														-0		1	1	1	-	-
	<u> </u>			-													1	1	-	-
													-	-6				-	~	-
	~																		-	-
	•			-		1											-		-	-
		-	-			5					Z									-
		-	-	-	-	-												-	-	-

quasi TEM line, EmPro

	Total E	E :(dB)	Refere	ence v	alue:	1472.6	7 V/m					_					_			
•	-35.347	3	30.298	3	3 1	25.248		()	20.199	9		-15.14	19		-10.0	99		-5.0496	()
•		•	•	•			•					4	1				•			
	•	- 💊	•	•	× 1		•			4	4	4	4	- 🖌				*		
-					1	1.6		4		4	4	4	4	4						
		- 🐛		1	1		1	1	4	4	4	4	4	1	1	1	-	-		
				1	1	1	×.	1 A	A	4		1	1	1	4	1	1	<u> </u>		
					10	1	1	1	1	1	1	- X.	1		1					
-								1	1	7	1	- 1		1		-	- 7			
			-				. 👌		- 📍 -	1	4	1	-	1	1	-	-	٠		
-	-	-	- 💌	-	×.			- P -		4	4	4	1	- 🗸	1		-	-		
-	-	-	-	-	>	>				4	4	4	1	1	-	-	-	-		
-	-	-	-	-	>	>	1			4	4	4	1	1	-	-	-	~		
		-	-	-	×.	X	1			4		4	1	1	-	-	-			
				_	-	X	K	K	A	Ā			1	1	- 1			-		
-				-	-	X	K.	T	T	T							-		^	
- 🥕		-	-	-	-	1	R	T.	T	7	7	- 7	-				- 🏊	A	A 1	
-		4		<			<u>.</u>	.	7	7	7	9	-				- 🏊		 • 	
			4-	<			.	A	4	4	4	4	1	7		-				
			-	1			Δ.				A	A			-				- <u>-</u>	
		5				-	-					-								
			-	-	R		V	V	1		V							_	- Ģ	
-	- <u>-</u>	-	~			1	1	1	1	1	V						. 🔦			
- A.	× 1	- 🗡		>	17	1	17	17	1	1	1				• •			*	*	
1		>	>	12	17	17	1	17	1	1	1			4						
1	>	1	1	1	1,	4	4	4	4	4	4	-	-			1	4			
	6		1	6	1.	4	1	4	4	4	1	1	2							
1	4	1	6	1	1	1	1	L	17		1	1	M	N						
1	/	V	1	1		1	V			4			V	V		Y		V		

quasi TEM line, EmPro

Total Sav :(dBp) Reference value: 86569.6 W/m **2												
								(85,42,48)				
-33.583	-28.786	-23.988	-19.19	-14.393	-9.5952	-4.7976	0					
								1				
Aproximativ TEM

a) COUPLED STRIP GEOMETRY

~ Aproximativ TEM 777777777777777 b) EVEN MODE ELECTRIC FIELD PATTERN (SCHEMATIC) 7777777777777777777777777777777

c) ODD MODE ELECTRIC FIELD PATTERN (SCHEMATIC)

 Equivalent geometry of a quasi-TEM microstrip line with effective dielectric constant homogeneous medium

Empirical formulas

$$A = \frac{Z_0}{60} \sqrt{\frac{\epsilon_r + 1}{2}} + \frac{\epsilon_r - 1}{\epsilon_r + 1} \left(0.23 + \frac{0.11}{\epsilon_r} \right)$$
$$B = \frac{377\pi}{2Z_0 \sqrt{\epsilon_r}}.$$

Figure 3.26b © John Wiley & Sons, Inc. All rights reserved.

$$\frac{W}{d} = \begin{cases} \frac{8e^{A}}{e^{2A} - 2} & \text{for } W/d < 2\\ \frac{2}{\pi} \left[B - 1 - \ln(2B - 1) + \frac{\epsilon_{r} - 1}{2\epsilon_{r}} \left\{ \ln(B - 1) + 0.39 - \frac{0.61}{\epsilon_{r}} \right\} \right] & \text{for } W/d > 2, \end{cases}$$

Characteristic impedance

Large impedances require narrow traces Small impedances require wide traces

$$k_0 = \frac{2\pi f}{c}$$
$$3\ell = \sqrt{\epsilon_e} k_0 \ell,$$

Microstrip standardization

- Standardization
 - dimensions in mil
 - I mil = 10⁻³ inch
 - 1 inch = 2.54 cm
- Trace thickness
 - based on the weight of the deposited copper
 - oz/ft²
 - 10z=28.35g and 1ft=30.48cm

Greut cuprulu	atea i depus	Grosime	a stratului
oz/ft²	g/ft²	inch	mm
0.5	14.175	0.0007	0.0178
1.0	28.35	0.0014	0.0356
2.0	56.7	0.0028	0.0712

Microstrip standardization

 Typically the height of the dielectric layers is also standardized in mil

Standard Thickness

RO4003C:

0.008" (0.203mm), 0.012 (0.305mm), 0.016" (0.406mm),

0.020" (0.508mm)

0.032" (0.813mm), 0.060" (1.524mm)

RO4350B:

*0.004" (0.101mm), 0.0066" (0.168mm) 0.010" (0.254mm), 0.0133 (0.338mm), 0.0166 (0.422mm), 0.020" (0.508mm) 0.030" (0.762mm), 0.060" (1.524mm)

 In schematics: >Tools>LineCalc>Start
 for Microstrip lines >Tools>LineCalc>Send to Linecalc

LineCalc/untitled						- • X
e Simulation	Options Help					
) 📂 🗖 🛊						
Component						
Type MLIN	TD M	IN: TL25	•			
Substrate Parame	eters	•	Physical W	13.660	(mil 💌	
н	15.000	mil 🔹 🔺	L	386.030	mil	
Er	9.600	N/A •			N/A *	
Mur	1.000	N/A V			[N/A *]	
Cond	5.96E+7	N/A *	Synthesize	Analy	/ze	
Hu	3.9e+034	mil 🔻				K Eff = 6 276
т	1.400	mil 🔻	Electrical			A_DB = 0.060
TanD	1.000-4		ZO	50.098900	Ohm 🔻	SkinDepth = 0.025
Component Param	eters		E_Eff	294.984000	deg 🔻	
Freq	10.000	GHz 🔻			[N/A *]	
Wall 1	1.0E+30	mil 🔻			N/A *	
Wall2	1.0E+30	mil 💌			N/A *	

- 1. Define substrate (receive from schematic)
- 2. Insert frequency
- 3. Insert input data
 - Analyze: W,L → Zo,E or Ze,Zo,E / at f [GHz]
 - Synthesis: Zo,E → W,L / at f [GHz]

- Can be used for:
 - microstrip lines MLIN: W,L ⇔ Zo,E
 - microstrip coupled lines MCLIN: W,L,S ⇔ Ze,Zo,E

LineCalc/untit	led				- • ×	LineCalc/untitled						
File Simulation	n Options Help	1				File Simulation	Options Help					
D 📁 🗖												
Component Type MLIN Substrate Para ID Alumina H	ID [ameters 15.000 9.600	MLIN: TL25	V Physical V L	13.660 mil ▼ 386.030 mil ▼ [N/A ▼]		Component Type MCLIN Substrate Parame ID Alumina H Fr	TID M		Physical W S L	9.924291 7.993661 121.714173	mil ▼ mil ▼ mil ▼	
Er Mur Cond Hu T Toop Component Par Freq Wall1 Wall2	1.000 5.96E+7 3.9e+034 1.400 1.000 1.000 1.0E+30 1.0E+30	N/A V N/A V N/A V MI V MI V GHz V MI V	Electrical Z0 E_Eff	N/A ~ Analyze • 50.098900 Ohm 294.984000 deg N/A ~ N/A ~ N/A ~ N/A ~	Calculated Results K_Eff = 6.276 A_DB = 0.060 SkinDepth = 0.025	Er Mur Hu T Component Param Freq	9.000 1.000 5.96E+7 3.9e+034 1.400 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.	N/A Image: Constraint of the second sec	Synthesize Electrical ZE ZO ZO C_DB E_Eff	Ana 70.040 39.370 52.511663 -11.046865 90.000	N/A ✓ lyze ✓ Ohm ✓ Ohm ✓ Ohm ✓ Ohm ✓ N/A ✓ deg ✓	Calculated Results KE = 6.978 KO = 4.870 AE_DB = 0.018 AO_DB = 0.032 SkinDepth = 0.025
Values are consist	tent					Values are consistent						1

LineCalc/untit	led					- • ×
File Simulation	n Options Help					
Component Type MCLIN		CLIN: MCLIN_DEFA	AULT 🔻			
Substrate Par	ameters a	•	Physical W	9.924291	mi 💌	
H	15.000	MI ·	S L	7.993661 121.714173	mil ▼ mil ▼	× 1 2 + w++s++w+
Mur Cond	1.000 5.96E+7	N/A *	Synthesize	Analy	/ze	
Hu T	3.9e+034 1.400	mil	Electrical			KE = 6.978 KO = 4.870
Component Pa	rameters	NI/A V	ZE ZO	70.040 39.370	Ohm Ohm	AE_DB = 0.018 AO_DB = 0.032 SkinDepth = 0.025
Freq	10.000	GHz	Z0 C_DB	52.511663 -11.046865	Ohm ▼ N/A ▼	
		[N/A *]	E_Eff	90.000	deg 🔻	

Values are consistent

Transmission lines

- http://rf-opto.etti.tuiasi.ro
- Transmission lines / Rogers
 - more precise formulas including
 - t, trace thickness
 - f, frequency
 - formulas for
 - microstrip
 - strip
 - coupled lines

9 B		1	MTEE	÷ 4		8	2	с т Т	1	3	• •		÷.	9 - 9	1	10	2		8	4	÷.	N	ITE	E Y	2 - 3 		1	1	9 8		8	÷.		8	8	8		÷.	8	a (a	2	2	2	MT	ΈE	а. С	÷.,	8 - 9	3	4	
1. S		1	Tee1		1.1		5	s - s		st - 3	: :>	- 25	*	3 (S	1	12	•	: :	0	8	ं	· T	ee2		<u>.</u>			<u>t</u> ;	S 3	5 (S)	1	28	ं	2	8	: :		ं		ः ः	12		8) - S	Ter	∋3 ·		The second		2	10	• •
25 - 2			. Subst	="Alı	umina	a" .	<u>8</u> .	A - 3	<i>.</i>	2		5		a 14		5	5		2	12		. 8	Subs	t="A	lum	ina".		<i>.</i>	a - 2			5	A - 2		1		s k				18		N - 1	. Su	bst=	-"Alu	umina	a" .	2	12	
ж. э		\rightarrow	W1=1	3.66	mil					а - э		: K				- 63	ĸ		2	3		. V	V1=	13.6	6 m i				ж. ::			κ.				a -			× -		-	ĸ		W	1=13	3.66	mil				
ж. э			VV2=1	3.00	mil		×	к к				- e	×.	5 S		-						V	V2=	13.0	6 mi			÷.	* 3		19	κ.				a .				a 14			¥. 3	VV2	2=13	3.00	mii				a 2
		34	VV 3=1	3.00	mu		2	2 X		34 8							23		-	34		. V	v3=	13.0	o mi	11 		42		2 32	15	22			_	_					13	20		vva	5=13	3.00	mı	2 V			5 2
						4				4			_	1.	82P - 2				-			1								_	4.	2	1_		1	62P 2				<u>.</u>			_								
			Ľ									_								L		1	- L										- 1 C							۲ L		_		10		л г	1				
				Ч	Ċ			5 S.		IM	LIN				Ť			с. с.		ML	.IN	8 (<u> </u>	5	đ	: i	0 X	1	19 - 19 - 19				6 - 6	Ċ.		Ť				· N						Y					
<u>+</u> ‡-	Te	m	2010	1	MIC		<u>i</u> .	N 8	Ċ	11	_25	-"^!	um in	s" S	nP	:	1	N (5	1	IL.	29 bot-	"^1.	min	."		: :		1	a 3	1 82	IL Cu	31 bot-		min	, S	nΡ		: *	ं		L32	-"^	Iumi		1	Å	MLC)C	1	10	
13	Te	rm 4	10 10 1 1	Г	TIO	7	51	5 - 2	1	. 0	upsi- /-13	- All	unnin mil	S	nP1			8. 8. No. 1	1	Su W	0.51- -13	. Alu 86. n	n il	а.	1			85 -	×	e 98	- Su	-13	- Alu	uruna vil	a S	nP2		:	3	· · · ·		1A	mil	na .	- 28		TL3	3	•	18	
15	Nu	im≔3		8	Sub	ct-"/	۱um	ina"			=386	03	mil	≥ F	ile="	D:\f	3414	433a	.s2p	" =	417	19 n	nil	Г		LUC	e e	1	8 B	· 2	1=	39.6	1 m		۰F	ile="	D:\f	3414	33a	s2p	=334	1 80	mil	e 14	- 2	1	Sub	st="	Alun	nina'	
	. Z=	50 0	hm .		W=	13.6	5 mil	ind .						· ·		10	20	· ·		-						_3U	-"^'			e - 24				•	34 - E	а I	<u>, </u>	÷ .		2 S	ÿ	1.00		. s	- 34	10	W=	13.6	6 m i	Ι.	
7.		15	x = x =1	- Q	L=3	64.1	1 mil	2. 2	4	60 - S	a 18	- 21	2	9 - Q	15	12	2	v = v	а. С	15	5	а .	- 2	L		1-12	- All	มแบบ ท.ป	ia .	1.15	84	2	v = v	5	84 - I	s		- 2	4	9 - 94	12	\tilde{c}	10		- 65	- 35	L=3	15 m	nil j	(S) - (
吉		22	10 10 1					5 S		8 8	a 18	- 2	2	$\sim -\infty$	12	2	2		2	3	<u>.</u>	8	- 2	4	- 1 =	=116	91 r	nil	2 S	1. 22	82	22	(z) = 0	2	S2 - 3	a .	8 1	÷	2	a 8.	23	2	20 - C		- 32	8	12	2 3	22	(22-2)	
											,					-																									•										
	•						· ·			SX 2		5 53				53	<u>80</u>			- 2	25					3 5		20				<u> </u>					5. 2				55	50			100		1				
90 B			and the second				¥.	*. *		- A - D	а но -			÷ .÷		•		• •			<u>.</u>	•	•			• •			3 3	e - 19	0.4	÷.	*: *							а са	•		* 3	• •		- 24	- Ki	-: -:		13 1	•
	e e		MSub				2	· ·		54 S		1		• •		÷.	×		2		-	e 9		*	а С	9 - 2 -			× 3	• •		1				а з	e +		*	÷ 0	-	*	*	e 94	- 24	10	1			14	
4 4			NOUD.		4		2			3	· .	1		8 8			2		्र	4	<u>.</u>			Ŷ	12				9 S		ं.				а. С	а. -			8	· ·	10	2	-		- 34	а. С		с с	1	а. С	
			MSUB				5	o .		3	• •			s (s		•			1	13			•				•	•	3 S								• •				•				1		20				
			H-15 m	a 						Q. 1					2				2	12	2			1				1			12	1							1		12	5				12	5		2	14	
			Fr=9.6							5 8 - 5						+	-			=	-			-	-		٦.	-			1.		_		. _E						•3										
			Mur=1				2					- 2				2	-				<u> </u>						-		_ L		J .							Ē.		em							2				
			Cond=5	.96E	+7														-						Г		1		Ē		1									enni lum:	-1										
			Hu=3.9	e+03	4 mil																				Ľ						<u>ا</u>		Ľ		2			1		-50	Ohn	n									
			T=1.4 n	nil		•				· · · ·							MC	FIL			MC	FIL		`	M	CFIL			M	CFIL			MC	FIL	•			Ц	[_]		Unin										
1. S	1	1	TanD=0	.000	1		20	8 - 8	1	S. 3	: s	5	÷.	\$ \$	1	- 10	CLI	n1 	A		ULI	12				LIN3	-"^!			In4			- CL	In5					•	t (t	22	20	\$2 - 2 2	•	1	1	20	5 C	2	1	: :
3) - S	- 2	2	Rough=	0 m i	il		<u>e</u> .	s - 5		1	• •	1	1	· ·	12	1	SUD	o eo	Alun	nina	JUC-	SI=	AIUI	nine a	1.5			um Ir mil	ast	=12	= AIL	un in ail	a 50	US(=	Alu		a .				15	5	<u>^</u>	r (*	1	87	5	· · · ·		10	· ·
2			10 N P	s - 35	a - 5	÷	50	s - 2			2 - N	5		2.12			S-7	9.09	mil	2	S-2	12.0) mi	"	S.	-24	00 I	nil vil	- VV	-12.	30 m	il i	S-	7 80	mil			.=	-	• •	10	5	8	e 19	2	100	15	· ·	2	2	
× 9	÷						÷.	• •				- K	-			- 53	1 = 2	45 2	5 m	il	1 =2	37 3	24 m	il '	1:	-24.	351	mil	1=	237	24 n	nil	1 =	245	25 m	ùl -					-	÷	* 3	• •	\sim	- 20	*	• •			
			2012	- x-			2			a - 1		- 2	1		3	10	2	10.2			2			".		200				201	.271			- 40.	20 11			1			18	2			- 54	- 35	- 23	12 - S	3	5	s - 7

- On all schematics you must have an substrate model/component
- Miscrostrip lines and coupled lines are computed in Linecalc for the same substrate

- We use components from the "Transmission Lines – Microstrip" pallete
 - MSUB substrate
 - MLIN series line
 - MLOC open-circuit shunt stub
 - MTEE modeling of T junction (shunt stub connection to main line)
 - MCFIL coupled line filter section (more accurate model than MCLIN – takes into account that two adjacent sections are physically close)

 Attention is required when inserting parameters for MTEE and MCFIL by checking in the schematic the width of the lines connected to each port.

- Usually there is a shift of the transfer function (red) towards lower frequencies compared to the ideal model (blue)
 - due to the MCFIL/MCLIN difference
- Tune the length of filter elements to move the filter bandwidth around fo = 5GHz

DC Bias

- <u>http://rf-opto.etti.tuiasi.ro</u>
- Agilent Application Notes
 - decoupling signal from DC Bias circuitry
 - DC Bias circuits for microwave transistors
- Appcad has tools for designing DC Bias circuits

DC Bias

DC Bias, typical choke

DC Bias, typical schematics/values

DC Bias, elements in E/S

 S_{11} (AT 4 GHz) = 0.52 \angle 154°

 S_{11} (AT 0.1 GHz) = 0.901 $\angle -14.9^{\circ}$

S'₁₁ (AT 4 GHz) = 0.52 \angle 154° UNCHANGED AT 4 GHz

S'₁₁ (AT 0.1 GHz) = 1.066 ∠ -8.5° |S₁₁|>1 AT 0.1GHz

DC Bias, bipolar transistors

Example project

Unify the two schematics

- L8 amplifier
- L9 filter

		Te Te Ni Z=	erm erm ' um = =50	1 =1 Oh	m			Re	i I I	- - - - - -	TL TL Z= E= F=	OC 18 50 137 5 G	0 OI 7.9 Hz	1m	TI TI Z: F:	_IN _19 =50 =14 =5 (0 0 6.2 GHz	hm		Sr Sr Fil	" 1P 1P1 e="[D :\f3	3414	I33a	•• .s2p	- TL Z= 5"F=	IN 15 50.0 108 5 G	0 OI 3.8 Hz	hmi	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ref		TL00 TL13 Z=50 E=12 F=5	C).0 O 25.2 GHz	hm	✓ TL TL Z= E= F=	-IN -14 =50.(=130 =5 G) Oh) 1 Hz	m		sæ ↓ SnF SnF File	2]-• 22 ="D:	\f341	433	a.s2	{ p"	TLIN TL16 2=5(E=1: F=5)).0 (36.8 GHz)hm z		Ref		TL TL Z= E= F=	<mark>OC</mark> 17 50 O 124 5 GF)hm 3 Iz	* * * * * * * * * * * *
	ŧ	-	-	-	-	•		•	•	• •	· ·				-	•		-		• •	 	•	-				•					•			-		· ·				· ·				-	-		•				-				
3	ं.	28	2	43	2	0	4	s.	2	2			×.		2	23	2						2	4					2		·		2	9 9.					- 14		- 21			- 0,		29		2	1	19 1				· · ·		
1	8	•	5	<u>.</u>	đ.,	1	2	*	•	•	5 d		27	•		÷.	a.		1	·	s .	÷	÷	2	•	•	•	*	•	÷		•	,	-		•		-		 		-		1-	• • г	4	<u> </u>	7		18 - N		•	• •		•	• •
a a	े २	т. К	e.	т. ж	*	÷.								5			-							3		50 I 63 I													-	1		. · r		-			-	5			Ē	Te	m m2		-	
a.	3	e (K)	×.	3		3	5	e -	•			- 33			÷	3	3	÷ - :		с , ,	×			6	< :	e (- 3					. •			1			16.1			<u> </u>	1.151		-	?				~ -1	13	٠Nu	um =2	2.		$\mathbf{v}_{i} = \mathbf{v}_{i}$
4	3	-	÷	÷	×	4	4	4	¥.				0	8			2				<. x	×	14	34		8	с 4 1	4	-		TL11	×.	34	TL	10	8		TL	.8	-	÷	. C	L9	-	•	40 g	TL12	5	3	6 - C		.Z=	:50 C)hm	10	1 - 1
	S.		2	2	2	4	4	1	1				а. С				2			•		4			а. С			1	4	1	Ze=70.04	Ohr	m	Ze	=56.1	18 0	hm '	Ze	=55	11 (Dhm	Ż	e=56	6.18	Ohm	1	Ze=7	70.0	3 Öhi	m i			0 0	· ·		
2	1	10	20	0	\$	ं		1	20			Ċ	ं	8	1	0	4	0	1		S (1	1		1	10 I	s - 6	1	1		Zo=39.37	Ohr	m	Zo	=45.0	05 0	hm	Zo	=45	76 0	Dhm	Z	o=45	5.05	Ohm	1	Zo=3	39.3	7 Ohr	m	Ŧ		1 A	ं	1	8 - 8
	े. २२		-	с. Э							5 5 5 5		े •	•	•						 			ा ज		•		•			F=5 GHz	•	d t	F=	5 GH	z	· ·	E=	-90 -5 GI	Hz .		F	-90 =5 G	Hz			E=90 F=5	GHz	<u>,</u>	· ·		- -				

Result (unbalanced)

Result (unbalanced)

Result (~periodic in frequency)

Tune -> balance

- purpose: balance the gain characteristic of the amplifier (maximum at design frequency)
 - favor tuning lines at the end of the amplifier
 - eliminate/minimize effect of the tune on noise

•		Ter Ter Nu Z=	m m 1 m= 50 (1 Dhr	'n			Ref	· · ·	TL TL Z= F=	<mark>OC</mark> 18 50.0 137 5 GI) Ohi .9 Hz	• • •	TLIN TL19 Z=5i E=1 F=5	9 0.0 (46.2 GH] Ohm 2 z		SnF SnF File	2]-• P1.)="D	:\ f 34	1433	a.s2	י≁[דו ע= 2= 2= 10000000000000000000000000000000	-IN -15 =50.(=108 =5 Gi) Ohi .8 Hz	m		2	TI Z E F	LOC L13 =50.0 =125 =5 G	0 Ohm 5.2 Hz	→ T T Z F	LIN L14 =50.0 =130 =5 G) Ohr) 1 Hz	 	■	2 P P2 æ="D):\f3414	133a.	- ≁ s2p"	- TLI TL Z= E= F=	N 16 50.0 O 136.8 5 GHz	him	Re	 	TLO TL1 Z=5 E=1 F=5	0C 7 0 Ohn 24.3 0 GHz	
	<u> </u>	:						е 13	e V	 		24 24	н. 2		•	•	а с 14 с	 		•	 	•	- 45 - 25	· ·	•		• •		 						а к 3 1	 	•		8 8	е с 2 - 2	•	а а 4 4						· ·
аў.	S.	.:	2) I			- 6	8.	23	10		1	÷.	12	2) U	6 Q		- 10 - 10	1 20	2	2 S	. n.	з.	18	21 12	4	5	a (a.	20	2 2	a (a	S	20 20	0 Q	- V	6 - 48	21 2	2	S (S	S	8 - 81	12	4 Q	S 2	9 - 20 -	2. 2	$\omega = \omega$	S. 18	- 12 - 2
0	S.	20	2				8	÷	0	е з	- 0	ં	27	2	8		34 V		9	9 - S		×.	10		÷	· [S. 3.		2 V	9 9 9	×				a 10				<i>8</i>		2	v 0	S 2			10 - 10 -	·:	
2	S*	10	S. 7			1	8	5	<u>t</u> ,	5 d	1	8	53	<u>s</u> (- <i>*</i>	1	1	: s		*		8	18	5 - 5	<i>:</i> *				· • •	1. 1	-		·	-	-	- i - i	- <u>-</u>		<u> </u>		_	-	÷ .	e 19	• •	a a	St - 18	
2	9	5	s - 2				2	1	8	8 3	3		5	5 3	5 X	3	2	• •	5	5	e - 25	2	5	s - 2	2	1	· L-		· ~ ·	1.1		_].*	2. E	L			20		J . * .				Ĩ.	+	L Te	em i	9 V	· · ·
2		50	с э				- 22	×.	1	<	- 2		- 62	< -	6 D.		\sim \sim	·		(\mathbf{x}_{i})	·	\sim	52	<			-	_	6 - K		_	-	1 2						1			-		· · .	2 Te	em2	$\approx -\epsilon$	
3	3	60	8 - B			- 08	3			6 - S	3	- 29	<i>8</i> 0	< -3	e - 3	1	~ -5	•	1		8 - 13	33	20	c = 0	3				1.	3 ×			1.1							. 7			1		5 N	um=2	$\sim - c$	
- 2	8	8	e 5			- 5	- 3	10		× 3		- 24	-	8 - S	- x	- 9	3 3			8.13		13	6	e 9	5	-		IN 11	61 - 61 -	8 A	CLIN TI 10			CL	.IN 9					e e	CL	IN 12	S - 4		.Z	=50 Oh	hm .	
8	S.	20	2				8	12	12	9 B	- 2	×.	27	21	8 8		S4 - 8		1	ар II. С	. S.	8	10	7 - 7	- 5	÷.	70	=70.0/	4 Ohm	1.1	76=56	6 18 0)hm '	70	=55.11	Ohm		76=56	18 0	hm	70	=70.03	Ohm	, -		$\alpha = \alpha$	$\sim - p$	1.1
	÷	•						5						5									•20				· Zo:	=39.37	7 Ohm		Zo=4	5.05 C	Dhm ·	Zo	=45.7	6 Ohm		$Z\sigma = 45$	05 01	hm	Zo	=39.37	Ohm		<u>L</u> .			
2	s:	18				12	87	•	÷	: ;		87	•		÷			• •	1	•		÷	13		ċ	2	- E=!	90			E=90			E=	90			E=90.			E=	90					· ·	
			•s = 3														1.1										. F=:	GHZ	4		F=5 G	HZ		E=	5 GHZ			r=5 GF	1Z .		F =:	o GHZ					· · · ·	

Tune -> balance, result

Amplifier, Filter, Total

DC Bias elements in ADS schematic

- Insert L (RF chokes) and C (decoupling)
- additional 50Ω connection lines
 - source
 - load
 - between blocks

+		Te	· · · ·	+×	LIN .35]- 	• • • • •		C C1) -		MTE Sub W1= W2= W3=	E st=" 13. 13.					~[ML	JN 25 Ibs			mi	na"		±			L L1 R=	10 1 	uH						2 =1 २=	10 1 ~-{[UH VIL	IN 29			ITE ee2 ub /1: /2: /3:	;E 2 ist= =1: =1: =1:	-"A 3.6 3.6		n in nil nil nil	ia"'	[!	· · · · ·	N 1				C C2 PTC=) - 15	nF				3 =10 = 	P						4 =1 =	D u ML TL:	H IN 32				V1 V1 V2 V3	=E 3 =1 =1 -C	="A 3.6 3.6 3.6		nir nil nil nil nil	na"				- 			· · · · · · · · · · · · · · · · · · ·		LIN 34	·]		
A A A	Ş	Nı Z=	rm 4 im= 50 (N Nn	=13. 236	.66	mil mil		-		5) 	* *	[TL SI W	27 ibs =1	t="	'AI	W Liff mi	= 13 66(3.6 5"0	6 m 3 n	nil nil		•	•	•		F	SnP file	יר פ"[י	D:\t	f34	14	33	a.s	2p'	, \ 1	N =	=13 411	3.60	5 m 9 m	ril nil				AL FL:3	OC 30	="4	N = _=3	13 9.6	.66 51 I	mi nil								Sņ File	P2 ?="	D:1	\f34	114	33	a.s	s2	/ V =	13	.66	mi mi			8	L		Sul N=	53 bs1 = 13	t="/	Alu 5 m	ımi n il	na'		•		W L=	=1:	3.6 36.7	i6 n 73 n	nil nil	
1 11	Ē		•			*	*	3	*		3	*			L=	36	4.1	11	mi							•			-							•	2		ĸ	-		•		•3	-		N=	13	.66	S m	il İl	ia	-	3		8	3		-				•			8			•				8						511	o m			•		*	•			•		-	
	-							4		1	4			2	4	- 23			-	-20	4							2	2					2		4			а 4	4	4			20			10				5		44			4			2				20 - 1 20 - 1	-	2						2				2			2	4	4	4		00 - 1 43 - 1		4	4			1			
	÷	•					8	2	*		3		•		•	1	÷		•	-	1			3	•				*	17				\$	÷	•					÷	•		10	•	8	1				÷	*	•			* 3			-					÷	÷				•	÷					-								: :	·	÷				3	2	•	8
	2	2	2010		<u>а</u> .	÷	2	े.		-	2	4	20		÷	-				-3	1	•	÷.	3	•	8 S	•	2	2	े.			-		÷		1				્ર	-			-	20	ं.			23 3			-	2				÷		1				-	2	ं.	÷.			•		2	ं.	2	2	<u>-</u>									2		8 23		2	S.	•	2
	9	-	-			•		4	•		M	Su	.		÷	23			•	-23	-	1	- 84	1		- S	•		-	22	-		2010	2	·	-20				20		•		-	•	-	2			20 G			10	3 4	•	1	3		2		-		-	-	-	8.	1			•	•	•	S.		2	1.14		-	-		•		- 12	÷	•	-	8 8		2	3 -	•	1
	3 2		10 0 20 0			÷	* 	ः ः	÷	L	-	-	*	1	1				÷.	1		Ċ						÷	** 33	87 10			53 - 3 33 - 33	*	•	*	 		•	-	*						97 13				:	÷.		3. 	÷	*	3	- 1	1		1			•	** 	97 10			*	? 	÷		87 18		1			1	- 10	1	*		•	•		1				1	Ċ	1
		ç.							З	- 20		SUE	na.		÷	- 22											-		223				20 08	: :	10	~				10	1	-	_	-	- 		10		5					0.5	-	223	125	70	-		7		-			54		2				20	54	3.2		1 12	_	-	27	112	72	2		2			2.12	2	-	<u> </u>		l.
											H=	15	mil													Г		L																		_		_										_	_			_	-		<u> </u>	-	_	_		4			L		_		-															
	4	2	38-3	- 22	8 .	4	2	ं.	2		Er	=9.1	5.	2	÷				2	23	4		1	1		-		-	÷	1	- 2	1	L		1		F	*].		. [1	L				. 1	-			-		F	1.	L].				i.a.c	5					N	LI	•	1	2	Ē	5	1	em	n 116		4				2	2			2	8.	2	
	4	×.	8.3		3 4	3	¥.		35	83	CC	nid=	5.9	6E	+7				6	-	14	÷	- 24			. 1	MS	TE	R	24	3		Г	-		20			· Г			1		-	ł	Г					-	- 1					2	-	-	1			•	Ste	ep2	F	3			·T	L36		4			Ş	N	un	n=	2 ·	÷		-	÷	×.	4	6 3		÷	<u>.</u>	3	×
		<u>^</u>	10 0		8	č.	A .,	S.	2	5	Hu	1=3.	9e+	03	4·r	nił			•	14							Ste	p1	-"^	Lun	nin	13"	. L	CE	11				. L		=11	1	1	14			26		1		·			11		1	2		-	1.			•	Su	bst	="/	Alu	ımi	na	. S	ub	t=	Al	im i nil	na	"	Z	=5	0	Dhi	m.		•		A.;	12			2	8	8. 1	
	4	1	10		3.	а. С	v.	84	4	10	T=	1.4	mil		1	13			è	18	2		3.	1		1	W1	=1	3.6	6 11	nil	a	CI	Lin	1	1	ΞŇ		C	Li	12	1			4	CL	in	3		20 S		. 0	Lin	14	4	10		CLI	n5	1			28	W	1=9	2.6	9 n	nil		L	=23	6.	73	nil	-	1			12	8	4		18	γ.	10	10	8 8.		2	÷.	9	¥.
	4	*	51 3		28	()) ())	10	28	20	8	R	nug ligua	1=0	mi		53				53	2	1	23		1	· 1	W 2	2=9	.89	тi	il 1		SI	ibs	st=	"ÅI	um	ina	à'S	ub	st=	-"A	lun	n in	à"	Su	ibs	st='	'Al	úm	'na	" S	úb	st=	"Alu	ımi	nà"	Sút	ost=	A"	lum	ina	à"	WV.	271	0.0	00		0	2		1	1.5	20	1	t		1	53		Ċ		62.5	4	1	5	0.28		•	28	2	1
	1	<u>^</u>	50.0	- A	80	<i>.</i>	^	8	4	5	2	1		2	1	53	1		1	12	10		- 31	1	1	10 S		1	5	1	đ		W	=9	.8	9 m	nil -		N	/=	12.	55	mi	fl -	1	W	=1	2.6	68 1	mil		·V	/=1	12.	55 n	nil	-	W=	9.8	9 n	nil		1	1	٨.	3	2		A ., .	1	d.	5	8	2	1	-		5	15	12	3		18	č.,	1	22	8.9		<u>^</u>	8	ð.,	1
																																	- C-	- /	20	m			୍କ	- 1	1 6	30.	mit	• · · · · · · · · · · · · · · · · · · ·		S-	- 7 /	1 0	5 m	nil -		C	- 2	16	0 m	il –		Q	7 90	a m	il -																															

Gain -> Tune/Optimization

freq, GHz

Final result (Gain)

freq, GHz

Final result (Noise)

freq, GHz

Layout (Example)

 Temporary replacement of the transistors and lumped elements (LC) with elements for which ADS has case information

Layout (Example)

- Microwave and Optoelectronics Laboratory
- http://rf-opto.etti.tuiasi.ro
- rdamian@etti.tuiasi.ro